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Introduction 

This paper is devoted to the study of a particular class of normal surface 
singularities: the rational quadruple points. We will determine the base space of 
a semi-universal deformation of such a singularity. The answer turns out to be 
unexpectedly simple: the isomorphism type of the base space of a rational 
quadruple point is completely determined by two numbers, s and n. The base 
space then is isomorphic to S X B(n), where S is a smooth germ of dimension s 
and where B(n) is a certain "universal" space defined in (3.5). A rational 
quadruple point with the star-shaped resolution graph (shown in Figure 1) has 
the factor B(n) in its space. We call such a singularity an n-star. 

n-1 n-1 

* ......_......*............... =-2curve 

* .... ......0 = -4 curve 

n-1 n-1 

FIGURE 1 

In general there are several approaches to finding the semi-universal 
deformation of a (normal surface) singularity X. In the first place there is the 
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direct method: one starts with the set of equations defining X as embedded in 
CN for some large N, and then one just computes. For this to work in practice 
the equations must have a sufficiently strong structure. For example, rational 
triple points (see [Tj]) (Cohen-Macaulay codimension 2), the cone over the 
rational normal curve of degree n (see [Pi]), n lines in Cn, etc., can be handled 
in this way. It seems however that the equations for the rational quadruple 
points are not known sufficiently well to compute the base spaces for them in 
this way. 

Secondly, there is the method of (partial) resolutions. Here one starts with 
a (partial) resolution Y of X and then studies the deformation theory of Y 
(which is usually much simpler) and finally one tries to blow down the deformed 
Y to get a deformation of X. This method works quite well for obtaining 
information on the components of the base space for rational singularities. For 
example, all deformations of a resolution of X can be blown down and give rise 
to the so-called Artin component of (the base space of) X (see [Wa]). Recently, 
Kollar and Shepherd-Barron [K-S] developed a method by which one can, for 
instance, determine the number of components in the base space of a cyclic 
quotient singularity. (From their approach it is also clear that the n-star 
singularity has (at least) n + 1 components in its base space.) However, the list 
of resolution graphs of rational quadruple points is quite long and contains many 
"exceptional" graphs, so this method seems to be quite involved. Furthermore, it 
does not really lead to equations for the base spaces. 

We propose to use a different method: the method of projections, which we 
will explain now. One starts with X embedded in CN for some large N, and then 
projects X generically into C'. The image X then will have a curve X as double 
locus. In such a situation the authors introduced in [J-S1] and [J-S2] a deforma- 
tion functor, Def(., X), which we called the functor of admissible deformations 
of X and X. We recall the definition. Let C be a category of spaces (e.g., those 
of germs of analytic spaces). A diagram of spaces is -* XS, flat over some base 
space S, is called admissible if and only if Is - exs/s) where exs/s is the 
relative critical space as defined by Teissier [Te, p. 587]. Now let Y., - X be an 
admissible diagram over the spectrum of the ground field. Then the functor of 
admissible deformations, Def(f, X): C -- Set is defined by: 

S -* (isomorphism classes of deformations 
of E -* X over S which are admissible}. 

We recall the main result of the paper [J-S3]; see also [J-S1]. Let X C C3 be a 
surface singularity with an ordinary double curve E as reduced singular locus. 
Let X -> X be the normalization of X. Then one has a natural equivalence of 
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functors: 

Def(l, X) -4 Def(X -4 X). 

Here, Def(X -> X) denotes the deformation functor of the diagram X X 
(cf. [Bu]). Moreover, the natural forgetful map: Def(X -* X) - Def(X) is 
smooth [J-S3, (1.3), (1.4)]. Therefore, by these results, we have that the base 
space of admissible deformations of E - X is up to a smooth factor the same as 
the base space of X Now, essentially because X is Cohen-Macaulay of codimen- 
sion 2 and X is given by one equation, this is much more "computable" than if 
we work directly with the equations for X. At first sight it seems that this 
method has two serious drawbacks. In the first place one has to choose a generic 
projection (to get an ordinary double curve), and naturally given projections 
usually are not generic. In the second place it is quite hard to find the explicit 
equation for X. For rational triple points, it is already a lot of work to write down 
explicit equations for X corresponding to the different resolution graphs and, for 
quadruple points, it becomes quite hopeless. We only give one example of our 
(very incomplete) list. (It appears convenient to use the theory of limits (see 
[Str]) to obtain equations for singularities that come in series.) 

FIGURE 2 

Example. For the equation 

f (X - y) ((X + y) (Z2 + xy2) + (X y)k+l y2) + Z1 (Z2 + Xy2)2 

we have the qualitative picture of XR = {(X, Y, Z) E R3If(X, y, Z) = 0} as shown 
in Figure 2. The resolution graph of the normalization X is shown in Figure 3. 

= -2 curve 

2k-1 * I 0 = -4 curve 
FIGURE 3 
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It turns out, however, that when we are interested in determining base 
spaces up to smooth factors, both drawbacks mentioned can be turned into 
advantages. The idea is the following: two weakly normal surface singularities in 
C3, X1 and X2, with (reduced) singular loci E1 and 12, respectively, have 
isomorphic base spaces (up to a smooth factor) for their semi-universal admis- 
sible deformation if: 

(1) X1 and X2 have isomorphic normalization X. As X will have many 
different projections into C3, we get many weakly normal surfaces with (up to a 
smooth factor) isomorphic base spaces. 

(2) Y. = ,2 and X1 is 12-equivalent to X2. Recall that we call two surfaces 
X1 and X2 C C3 (with the same singular locus A,, defined by an ideal I) 
i2-equivalent if there are defining functions f1 and f2 for X1 and X2, resp., 
such that f1 _f2 E IP (see [J-S1], [J-S2]). 

The fact that 12-equivalent X1 and X2 have (up to a smooth factor) 
isomorphic base spaces for their semi-universal admissible deformation is, in the 
authors' opinion, a simple but important result [J-S2, (1.16)]. One could say that 
in this sense Def(Y, X) depends more on Y, than on X. 

So we have two principles that can be used to determine the base space of a 
semi-universal deformation of a weakly normal surface singularity up to a 
smooth factor. We can even take the "transitive hull" of these two principles, 
making it into a powerful tool. 

It turns out in Section 2 that these principles are strong enough to 
determine the base space of a semi-universal admissible deformation of a weakly 
normal surface with reduced singular locus a curve in C3 of multiplicity three 
and Gorenstein type two. In Section 1 we prove that rational quadruple points 
have a generic projection such that the reduced singular locus is a multiplicity- 
three and type-two curve, and prove some facts about these curves. In Section 3 
we compute a semi-universal deformation of an n-star, thereby getting equa- 
tions for the space B(n) that was mentioned in the beginning of the Intro- 
duction. Finally, in Section 4 we study the structure of the space B(n). It is 
proved that B(n) has n + 1 irreducible components, of which the normaliza- 
tions are smooth. 

Conventions. We will work in the category of analytic spaces, but as we 
work almost exclusively with germs, we do not make notational distinction 
between germs and suitable representatives. X will always be a germ of a 
normal surface singularity and X a weakly normal surface in C3. The reduced 
singular locus of X is denoted by Y., and I will be the ideal of functions in 
C{x, y, z} which vanish on E. The defining function f of such an X will be an 
element of f , the ideal of functions in I whose partial derivatives are also in I. 
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As I is reduced, fI is just the second symbolic power of I. The (Gorenstein) 
type of a germ is the number of generators of the dualizing module. 
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1. The singular locus of a generic projection of rational quadruple points 

The main idea of this paper is to bring questions about deformations of 
normal surface singularities back to the study of the singular locus of a "generic" 
projection of such a singularity. So, in order to study rational quadruple points, 
we have to study which curve singularities appear as a singular locus when we 
project a rational quadruple point. We start with some general numerical 
relations related to a generic linear projection. 

LEMMA 1.1. LetX C Cn be a ((multi-) germ of a) normal surface singular- 
ity, where N = Embdim(X) is the embedding dimension of X. Let L: CN , C3 
be a generic linear projection and let X = L(X) C C3 be its image. Let X be the 
reduced singular locus of X and let H and H be the generic hyperplane sections of 
X and X, respectively. Then: 

(i) m = Mult(X) = Mult(X) = Mult(H) = Mult(H) ?2 N - 1. 
(ii) Mult(l) = 8(H) - 8(H1). 
(iii) 8(H) ? m (m - 1)/2; 8(H) ? m - 1. 
(iv) type(E) ? N - 3. 

Proof. (i) is obvious because we have a linear projection. The inequality 
expresses the minimality of the embedding of X in CN. Statement (ii) follows 
when we move the hyperplane H away from the special point. We then get as 
intersection with X a curve with Mult(l) ordinary double points. But the jump 
in 8 in a family of curves is equal to the 8 of the special fibre of the 
normalization of the family (see [L-L-T]); so in this case it is equal to 8(H). 
Statement (iii) is a generality: given the embedding dimension and the multiplic- 
ity of the curve, one has a lower bound for its 8-invariant, which is in the stated 
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cases as above. (For a proof, see [B-C, 3.3].) Statement (iv) comes from the 
following: E is Cohen-Macaulay of codimension 2, so the equations for E are 
obtained as the maximal minors of a t x (t + 1) matrix. Then type(E) = t. As in 
[J-S3, (3.1)] this gives us an embedding of XA into a smooth space of dimension 
3 + t; hence N < t + 3. 1 

LEMMA 1.2. If X is a germ of a rational surface singularity, then all the 
inequalities of Lemma 1.1 are in fact equalities. 

Proof. This lemma is a reflection of the strong minimality properties 
enjoyed by rational singularities. For the fact that N = m + 1 we refer to [Ar]. 
For the statement that 8(H) = m - 1, see [B-C, 4.1.2, 3.3]. Curves with 
8(fi) = m - 1 are exactly the so-called partition curves [B-C] for which one 
easily sees that a generic projection H into C3 has 8(H) = m(m - 1)/2. In 
particular we get mult(Y) = (m - 1)(m - 2)/2. The statement about the type 
can be seen as follows: because E is Cohen-Macaulay, the subscheme of C2 
given by E n H has length (m -1) - (m - 2)/2 and, by Lemma 1.1, 
type(Y, n H) ? m - 2. From these facts alone it already follows that the ideal 
of X, n H is the ideal ffrn, where xfi is the maximal ideal of C{y, z4 = &C2, o. 

Hence indeed type(E) = type(Yf n H) = m - 2. 1z 

COROLLARY 1.3. X rational triple point => E is smooth; i.e., X is a line 
singularity. X rational quadruple point * E has multiplicity three and type two. 

Proof is immediate from Lemma 1.2. 1 

LEMMA/Definition 1.4. Let E be a Cohen-Macaulay curve germ of multi- 
plicity three and type two. Then the equations for E can be obtained as the 
2 X 2-minors of the following matrix: 

M Y z +a b) 
c y + d z 

Here a, b, c and d are functions only depending on x. The A-invariant of such a 
curve is defined as: 

A(Y) = min(ord(a), ord(b), ord(c), ord(d)). 

Conversely, if A(Y.) ? 1, then the minors of the above matrix do define a 
Cohen-Macaulay curve germ of multiplicity three and type two. 

Proof. Choose a generic projection of Y on a line with coordinate x. Then 
Y can be considered as the total space of a flat deformation of Y intersected 
with x = 0. This subscheme of C2 is defined by N2 = (y2, yz, Z2). As these 
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equations can be obtained from the matrix as above (with a = b = c = d = 0), 
we find the indicated form for the equations of E. N 

Remark 1.5. Curves of multiplicity three can be classified and J. Stevens 
has sent us the complete list. However, it turns out to be possible to pursue 
our arguments without going into the fine structure of this classification. Note 
that a Cohen-Macaulay curve E of multiplicity three has type < 2, and that 
type(E) = 1 implies that E is a complete intersection. This happens in case 
A(E) = 0 (see Lemma 1.4). 

LEMMA 1.6. Let E be an isolated curve singularity of multiplicity three and 
type two, with A(E) = A. Then the tangent cone of E is isomorphic to a 
multiplicity-three scheme 6 in p2 described by: 

Case A ? 2: (y2, yz, Z2); 

Case A = 1: Either by (x, z, y3) or by (z, y2) n (z, x) or by (z, y) n 
(x, y) n (x, z). 

Proof: This follows easily from the equations describing a multiplicity-three 
and type-two curve; see (1.4). N 

Remark 1.7. As we will see in Section 2, every multiplicity-three and 
type-two curve with an isolated singularity appears as the reduced singular locus 
of a projection of a rational quadruple point. It is not true, however, that every 
curve of type m - 2 and multiplicity (m - 1)(m - 2)/2 is the singular locus of 
a projection of a rational singularity of multiplicity m for m > 5; there are extra 
conditions on the curve but we do not know exactly what they are. This is one of 
the reasons our arguments do not apply for rational singularities of higher 
multiplicity. Moreover, the work of Arndt [Arn] on cyclic quotient singularities 
suggests that the results we obtain for rational quadruple points do not have a 
simple generalization to rational singularities of higher multiplicity. 

PROPOSITION 1.8. Let E and coordinates x, y, z be as in Lemma 1.4. Let 
= (A , A2, A3) be the ideal of E defined by the minors of the matrix M. 

Consider the function 

al 0a2 ?a3 

t: = det(M) E C(x}[y,Z]; MA= y z + a b 
c y + d z 

where (al, ar2, ag3) := X- WdY -cz, ad -bc, az -by), A = A(E). Then 4) has 
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the following properties: 
(i) 4) E fI; i.e., E is in the singular locus of 41. 
(ii) Mult(4)) = 3; deg(, ,)(4)) = 3; 4)(0, y, z) # 0. 
(iii) Consider a 3 X 3 matrix h with entries in C{x, y, z} with generic 

constant part ho. Then the space X defined by 4) + EhijAiAj = 0 has precisely 
E as singular locus and has a smooth normalization X, and the inverse image of 
X n {x = 0} on X is a smooth curve. 

Proof. Let us first indicate the geometrical significance of a function 'I 
having properties (i) and (ii). The intersection of E with the plane x = t, t # 0, 
consists of three distinct points in the (y, z)-plane. Multiplying together the 
three linear factors describing the lines through the three pairs of points, we get 
a polynomial 4) of degree 3 in y and z with coefficients depending on x. A 
direct computation then shows that 4) can be written as the above determinant. 
The Cramer matrix N of 2 X 2 minors of M is seen to be equal to 

(A1 aA2 + A3 A1 + fA2 
] = A2 yA1 + 8A2 aA2 + fA3 

'A3 yA2 + 8A3 yA1 + 8A2 

(where (a, /3 y, 8) = _-A (a, b, c, d)), which shows that the matrix N has 
entries in the ideal I. This is equivalent to the fact that 4) E fI (see 
[J-S3, (1.12)]), as should be clear geometrically. Now we turn to statement (iii) 
of the proposition. The curve X n {x = 01 has an equation of the form 
4)(y, y, z) + G(y, z), where G starts with a generic quartic in y and z, because 
of the genericity of ho. From this it follows that 8(X n {x = 0}) = 3. For small 
values of t the curve X n {x = t} has three ordinary double points; hence the 
family X n {x = t} for varying t is a 8-constant family of plane curves. Conse- 
quently, X has precisely I as singular locus, X is smooth and the inverse image 
of X n {x = 0} on X) is smooth (see [L-L-T]). 

COROLLARY 1.9. In the above situation, J1/12 = C[X]/XA, and a C-basis for 

fl/I2 is given by 4F, x 4).. xA-1 q). 

Proof: This can be checked by a direct calculation, but it is much nicer to 
apply here a beautiful theorem of D. Mond and R. Pellikaan (see [M-P, Thin. 
4.4]) which implies that for a weakly normal surface X in C3 with singular locus 
I and with a Gorenstein normalization X, the module f1/12 is cyclic with 
generator F, where F = 0 is the equation of X and has as annihilator the 
(t - 1) X (t - 1) minors of the t x (t + 1) matrix defining 1. In our case X is 

smooth by Proposition 1.8, (iii) and t = 2; so the annihilator of f 1/12 is the ideal 
(y, z, xA). For a different proof of this fact, see [J-S3, (2.6), (2.8)]. 1 
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2. Weakly normal surfaces with singular locus of multiplicity three 
and type two 

We will prove in this paragraph that weakly normal surfaces, which have a 
curve of multiplicity three and type two as reduced singular locus, have a base 
space of a semi-universal admissible deformation isomorphic to a space B(n) x 
Ck, where n is a number which can be easily read off from an equation defining 
the weakly normal surface. As already remarked in the Introduction, we get as a 
special case the base space of a semi-universal deformation of a rational 
quadruple point. Finally, we show that for rational quadruple points n can be 
determined from the resolution graph. 

It follows from (1.9) that we have some sort of normal form for equations 
of weakly normal surfaces X with reduced singular locus E a curve of multiplic- 
ity three and type two. Every such X is defined by an equation of the form: 

Fp h:= XP * 4I + EhijAiAj = 0 

for suitable p and h = (hij). 

We will now study how the normalization of a "generic" weakly normal 
surface with reduced singular locus of multiplicity three and type two looks. We 
start by studying the tangent cone. 

LEMMA 2.1. Let Xp h(l) be the surface in C3 defined by 

Fp h = XP * 4) + EhijAiAi = 0 

where h = hij and Ai are generators of the ideal of E. Suppose h has generic 
constant part ho. Then the tangent cone of the surface Xp h(l) is the cone over a 
curve C c p2, which has the following structure: 

Case A: A(E) ? 2, p ? 2; C consists of four distinct lines, all passing 
through a single common point. 

Case B: A(E) ? 2, p = 1; C is an irreducible rational quartic curve with a 
unique singular point of type D4, D5 or E6. 

Case C: A(E) = 1, p = 1; C is an irreducible rational quartic curve with 
one (As), two (A3 + A1) or three (3 A1) singular points. 

Proof. If p ? 2, then the tangent cone of Xp h(l) is determined by the 
term Eh i' 'AA, because 4) has multiplicity three. If A(E) ? 2, then the lowest 
order terms in the matrix M of (1.4) are the y and z; so for generic h we get as 
tangent cone a general quartic in y and z, which settles case A. If p = 1 and 
A(1) ? 2, then the lowest order term of Fp h contains also a term x 4). 
Corresponding to the cases that 4)(0, y, z) is equivalent to y3 + z3, y2 * Z, Y3) 
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we then find a D4, D5 or an E6 on C, which settles case B. The remaining case 
is A(2) = 1. Here we have that the tangent cone of E is described (up to 
isomorphism) by one of the ideals mentioned in Lemma 1.6, and from this it 
follows easily that the tangent cone Xp, h(l) is as asserted. 9 

PROPOSITION 2.2. For generic h and 1 < p < A(E), surface Xp h(l) has as 
normalization a p-star singularity. 

Proof. We blow up C3 at the origin. Let A' and X' be the strict transforms 
of E and Xp, h(l). Now X' will have the tangent cone of Xp, h(l) as exceptional 
divisor. If p ? 2, then A(E) ? 2, so that A' will still be a curve germ of 
multiplicity three, and A(I') = A(l) - 1, as one easily sees from blowing up 
the matrix M of (1.4). Also, by (2.1), the exceptional divisor of X' consists of four 
lines through a point, which is also the singular point of A'. Around this point 
the surface X' will have a singularity of type Xp_1 h'(ia), as follows if we look at 
the equation in the x-chart. Because the tangent cone is reduced, X' will be 
smooth apart from this singularity. As only the constant part of h enters in the 
genericity assumption for Lemma 2.1, and the constant part of h' is the same as 
that of h, the same arguments apply for the strict transform of the first blow-up. 
After p -1 blow-ups we have introduced four chains of rational curves of 
length p -1 and we are left with a singularity of type X1 ht("). Now there are 
two cases: A(I") ? 2 and A(I") = 1. These correspond to cases B and C of 
(2.1). In each of these cases the tangent cone of X1 h4,4") is an irreducible 
rational quartic curve. In the first case we find after still one further blow-up a 
unique special point of type X0 ... (I ..), which has by (1.9) a smooth normaliza- 
tion (and the inverse image of the quartic is also smooth). In the second case we 
get, after blowing up X1 h"(W), a surface X"' with singular locus E"' which can 
have one, two or three disjoint parts. We claim that X"' again has smooth 
normalization and that the inverse image of the quartic is also smooth. This can 
be seen by applying the same idea as in the proof of (1.9): around a part of E"' 

the germ of X"' can be considered as the total space of a family of curves with, 
as special fibre, the (germ of the) exceptional quartic. It is not hard to see that 
this is a family with constant 8 (equal to 1, 2 or 3), which proves the claim. Our 
conclusion is that Xp, h( .) for generic h has as normalization a singularity which 
has, as resolution graph, the graph of the p-star singularity. By keeping track of 
the order of vanishing of the function x along all exceptional curves, one can 
compute all the self-intersections and they are as for the p-star singularity. 1 

Remark 2.3. At this point one can conclude that the base space of a 
semi-universal admissible deformation of any weakly normal surface in C3 with 
a curve X of multiplicity three and type two as reduced singular locus is (up to a 
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n-1 n-1 
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n-1 n-1 

FIGURE 4 

smooth factor) isomorphic to the base space of some n-star singularity. But, 
n-star singularities are not determined by the analytic type of the resolution 
graph (cf. [La]), except for n = 1 or 2. In fact, one can see from Proposition 3.4 
that there is an n - 1-dimensional family of n-stars. As a consequence, the 
argument of the main theorem of this section in an earlier version of this paper 
[J-S1] is not complete. We are going to find, however, weakly normal surfaces 
such that the normalization is taut, i.e., determined by the topological data of the 
resolution graph. We are only able to find such weakly normal surfaces for which 
a defining function is in 12. Let X(n) be the rational quadruple point with dual 
graph of the minimal resolution (see Figure 4). 

THEOREM 2.4 [La]. X(n) is taut 

Construction 2.5. Let X be an isolated curve singularity of multiplicity 
three and type two with A(X) = A, defined by the 2 X 2 minors of: 

Y z + aAx + bAX A+ 

\CAX + *** y + dAX +** z 

Let Ai be the i-th minor of this matrix. Consider the (maybe nonreduced) curve 
singularity defined by the 2 X 2 minors of ( y z + aAx bAX 

CXX y + dAX Z 

and let A, be the i-th minor of this matrix. Because this ideal is homogeneous, 
this defines a multiplicity-three scheme v in p2. By Lemma 1.6 we know the 
possible isomorphism classes of e, and it is therefore easy to construct smooth 
quadrics Qj: (1 = O, Q2: D2 = O such that: 

(1) v is contained in Q1 and Q2, Q1 is not equal to Q2. 
(2) The fourth point of intersection of Q1 and Q2 is not contained in the 

reduction of W. 
(3) ?1(x, y, z) ?2(x, y, z) = 0 intersects the line x = 0 in four different 

points. 
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Now write P = EpiAi; ?2 = EqiAi, and put 

(D= EPiAi and ?2= :qjAi 

Let hij be a generic 3 X 3 matrix with entries complex numbers. Let X(X.) be 
the singularity defined by the equation: 

(D * 2 + x * EhijAiAj = O. 

PROPOSITION 2.6. The normalization of X(X.) is isomorphic to X(A). 

Proof This is completely analogous to the proof of Proposition 2.2. The 
only difference is that after A - 1 blow-ups, one does not get an irreducible 
rational quartic, but, by construction, two quadrics. Details are left to the reader. 

Let us briefly recall the description of the normalization mapping that was 
used in [J-S3]. Let I be an ideal in Ox that satisfies the so-called ring condition 
Homx(I, I) = Homx(I, XA). Then we get a ring extension Ox C Ax = 
Homx(I, I)( c Q(6x)), where we put X = Spec(Homx(I, 1)). Conversely, given 
Ox C Ax, we can reconstruct I as the conductor ideal Homx(g, Ox). In 
particular, this applies to the normalization X -> X of a weakly normal surface X 
with singular locus described by an ideal I. It is important to note that this 
construction of Ax works perfectly well even if X is not reduced. We apply this 
construction to the non-reduced space defined by the equation xP ( = 0. 

LEMMA 2.7. Let I be generated by the 2 X 2 minors of M of (1.4) and let Y 
be defined by the equation xP' = 0. Then the space Y c C5 is defined by the 
following six equations: 

X aP *1 + U y + V u C = O. U2 = XP u(U + yv), 

XP * a2 + U * (z + a) + v (y + d) = O. uV = xP (au + 8v) 
+ x2p * (fy - a5) 

XP * 3 + u b + v z = O, v2 = xP (,u + av) 

with notation as in (the proof of) Proposition 1.8. 

Proof As a module over Oy, Oy is isomorphic to the cokernel of the matrix 
M of (1.8), with the top row multiplied by x P. The rows of this matrix 
correspond to the elements 1, u and v of My; hence the first three equations 
hold. To get the ring structure on Oy, we have to compute the products u2, uV 
and v2. But the columns of the Cramer matrix N correspond to 1, u and v, 
respectively, which are seen as elements of Homy(I, I) and with the explicit 
form of N given in (1.8), we find the other three equations. N 
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PROPOSITION 2.8. Let X be an isolated curve singularity of multiplicity three 
and type two, with A(X.,) = A. Let [f] be an element of fl/I2. Then there exists a 
representative f of [ f ] such that: 

(1) The singular locus of f is exactly X, and the surface X defined by f = 0 
is weakly normal. 

(2) The normalization X of X has a projection X -> X', with defining 
equation f' = 0 for X' and defining ideal F' for the reduced singular locus .' of 
X' such that f' E I'2. Furthermore, .' is a curve of multiplicity three and type 
two. 

Proof. One can assume that the ideal I is generated by the 2 X 2 minQrs of 
the matrix in (1.4) and that [f] = [xP cF]. Take the lift x P of f and let the 
space Y be defined by this lift. The equations of the space Y = Spec(Homy(I, I)) 
are given in Lemma 2.7. Consider the following change of coordinates: 

x = x, v' = v, u' = u, z' = z - v, y' = y - u. 

Performing the substitution in the first three equations of (2.7) and using the 
second three equations of (2.7), we then see that Oy, considered as a module 
over C{x', y', z'}, is equal to the cokernel of the matrix: 

C1 c2 C3 

M = y' z' + a' b' 
c' y' +d' z') 

where a' = a + 2 xP'a, b' = b + 2 * xP,8, c' = c + 2 * xPy, d' = d + 2 * xP5, 
ca = al, a'2=2 + 2 X2p(y -a) and a' = 3. 

Let I" = (A'1, A'2, S3) be the ideal generated by the 2 X 2 minors of (the 
lower part of) the matrix M'. One calculates that (X-P - 2) * det(M') = Si 
A3 - (A'2)2. The image Y' under the projection (x', y', z', u', v') -> (x', y', z') is 
given by the equation det(M?') = 0 and the role of the curve X is replaced by 
the curve E", defined by the ideal I". In particular, we see that A(Y,") = p. 

Now consider a function g E 12, such that f= xP( + t g, t a small 
parameter, has exactly X as singular locus, and f = 0 is weakly normal. That 
such a function g exists can be proved in exactly the same way as in [Pe (2.1)]. 
Let Z be the normalization of Z, defined by f = 0. By [J-S3, (1.3)], Z can be 
considered as the total space of a deformation of Y. Here Z C C5 X T. Taking 
the projection C5 X T -> C3 X T described by (x', y', z', u', v', t) -> 

(x', y', z', t), we get a small admissible deformation of Y', again by [J-S3, (1.3)]. 
Call a general fibre of this deformation X'. The singular locus .' of X' has A 
invariant less than or equal to p, because it is a small deformation of the curve 
E". Now the invariant dim f1/(12 +f) only depends on the normalization of 
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f = 0 [J-S3, (2.6)]; so one deduces that the A invariant of .' is exactly p and 
that f' E I'2, where f' defines X', and I' defines Y'. 1 

Remark 2.9. We expect that the normalization of every weakly normal 
surface, which has as reduced singular locus a multiplicity-three and type-two 
curve, has a projection X' into C3, such that for a defining function f' of X' one 
has f' E If2, I' the ideal of the reduced singular locus .,' of X'. We do not know 
of a proof, except maybe by a very tedious calculation. We remark, moreover, 
that this is a very peculiar property of multiplicity-three and type-two curves 
and is certainly not true for most curves in C3. 

We are now in the position to prove the main theorem of this section: 

THEOREM 2.10. Let X be a weakly normal surface in C3 with re- 
duced singular locus X of multiplicity three and type two. Let I be the ideal 
defining Y and f = 0 be an equation for X. Then the base space of a semi- 
universal admissible deformation of X is isomorphic to a space B(n) X Ck , where 
n = dim( f 1/(12 + f)). Moreover, the same is true for the base space of a 
semi-universal deformation of a rational quadruple point. 

Proof Let us recall from [J-S2] that two functions f, g E JI are called 12 
equivalent if and only if fI/(12 + f ) = fI/(12 + g). From [J-S2, (1.16)] one has 
that if two functions are I 2-equivalent, then the base spaces of semi-universal 
admissible deformations of f and g are isomorphic up to a smooth factor. Also 
from [J-S3, (1.4)], base spaces of semi-universal deformations of two weakly 
normal surfaces are isomorphic up to a smooth factor if they have isomorphic 
normalizations. Using these two facts and Proposition 2.8, one reduces to the 
case that a defining function of X is in I 2. Proposition 2.6 tells us that every 
curve X of multiplicity three and type two and A(Y,) = n has a function in 12 
such that the normalization is isomorphic to the rational quadruple point X(n). 
From this the theorem follows. The statement about rational quadruple points 
follows from the fact that a generic projection of a rational quadruple point has 
as reduced singular locus a curve of multiplicity three and type two by (1.3). N 

For a rational quadruple point it is possible to determine dim( 1/(I2 +f)) 
(where f = 0 is a defining equation for a generic projection) from the resolution 
graph. For this we need the following general lemma. 

LEMMA 2.11. Let X be a normal surface singularity C CN and let X be the 
image of X under a linear projection L: CN C3. Let X1 and X1 be the blow-ups 
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of X and X, respectively. Then for a Zariski-open set of L's: 

(1) There is an induced map X1 -> X1. 
(2) The normalization of X1 is isomorphic to the normalization of X1. 

Proof For a vector space V, let P(V) be the projective space of lines 
through 0 and let V1 be the blow-up of V at 0 (or the tautological bundle over 
P(V)): V1 = {(x, /) E V X P(V)lx E /). Let L: V -> W be a linear surjection 
with kernel K. The inclusion K C V induces an inclusion K1 C V1 and L 
induces a map L1: U1 = V1 - K1 -> W1, exhibiting U1 as a rank equal to 
dim(K)-vector bundle. Let X be a germ in V and X = L(X) C W. Let X1 and 
X1 be the strict transforms of X and X, respectively. The tangent cone C(X) is 
just X1 n P(V). Now if C(X) n P(K) = 0, one also has X1 n K1 = 0, so that 
L1 induces a map X-> X1, mapping C(X) to C(X). In the case that C(X) is 
mapped generically one-to-one to C(X), the same is true for X1 -- X. Thus, 
under these circumstances, X1 and X1 will have the same normalization. A 
simple dimension count involving the secant variety of C(X) then shows that 
these conditions are satisfied for a Zariski-open set of L's as soon as dim(X) < 
dim W - 1. In particular this applies to projections of surface germs to C3. 1 

Definition 2.12. Let X be a rational quadruple point. Then n(X) is defined 
inductively by: 

(1) If on the strict transform X1 of X of the first blow-up no rational 
quadruple point occurs, then n(X) = 1. 

(2) If on Xi there is a rational quadruple point at, say, p, then n(X) 
n(X1, p) + 1. 

By results of Tjurina [Tj], the strict transform of the first blow-up of a 
rational singularity is normal and the singularities appearing on the blow-up are 
easy to describe in terms of the resolution graph of the original singularity. 
Using this, we easily calculate n(X) from the resolution graph of X. 

THEOREM 2.13. Let X -> X c C3 be a generic projection of a rational 
quadruple point. Let Y be the reduced singular locus of X and let I, f define 
Y, X, respectively. Then 

n(X) = dimf 17(12 

Proof Because the projection is generic (in the sense that (1.2) applies), 
the singular locus of X is a curve Y of multiplicity three and type two, with 
A(Y,) = A. So, by (1.9), one can write f = xP'N + EhijAiAj for a certain matrix 

hip with p < A. Suppose first that p = A ? 2. Then on the first blow-up X1 of 
X one has a special non-isolated singularity where the singular locus Y.1 has 
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A(ld) = AA-1, the normalization of which occurs on the first blow-up X1 of X, 
by Lemma 2.11. This must be a rational quadruple point, because it deforms into 
one. (Perturb the matrix hi' until it becomes generic; then the normalization is a 
(A - 1)-star singularity; see (2.2).) Because X is resolved by a finite number of 
blow-ups in points, we may assume that for each of the local singularities of X1 
the genericity conditions of (2.11) hold for the map L1: X1 -> as well (in local 
charts L1 is linear). So, by induction, we reduce to the case A = 1. If one blows 
up once more, then the strict transform of the singular locus becomes a curve of 
type one (hence a complete intersection). The normalization of the strict 
transform of X now has embedding dimension less than or equal to 4, hence 
cannot be a rational quadruple point. This proves the theorem in the case p = A. 
The case p < A - 1 is similar, and therefore left to the reader. 

Remark 2.14. It is proved in [J-S3, (2.8)] that dim(fI/(12 +f) = 

dim Ext 1(wx O) for any projection of X. Hence it follows from Theorem 2.13 
that n(X?) = Ext1(wx, eO) for rational quadruple points. For another proof and 
another interpretation of this number, see the recent paper of J. Stevens [St, 
Lemma 8]. 

3. The semi-universal deformation of an n-star 

By the results of Section 2, in particular Theorem 2.10, the base space of a 
semi-universal deformation of an arbitrary rational quadruple point X will be, 
up to smooth factors, equal to that of any n(X)-star singularity. In this paragraph 
we determine a semi-universal deformation of a particular n-star singularity that 
has a very symmetrical projection into C3. We do this essentially by computing 
the semi-universal admissible deformation of the projection. We include the 
calculation in some detail as it is a good illustration of our theory of admissible 
deformations (the remaining details can be filled in easily by the reader). 
Although the main result of this section is straightforward, one should not 
underestimate the effort to prove such a result. The main difficulty is finding the 
right notation and making the right choices. The symmetry that runs through all 
calculations is of great help, but formalizing this (in terms of representations) did 
not increase our understanding of this mysterious calculation. 

We begin with the study of a very special curve X of multiplicity three and 
type two and A-invariant (see (1.4)), equal to a fixed natural number n greater 
than zero. 

Definition 3.1. Let Li(y, z) E C[y, z] (i = 1, 2, 3) be three different linear 
forms with L1 + L2 + L3 = 0 and put Mi = Li + xn E C[x, y, z]. The curve 
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C c C3 is the curve singularity defined by the ideal 

I = (A1, A2, A3) = (M2M3, M3M1, M1M2). 

So I consists of three smooth branches and each pair of branches has contact 
order equal to n. Each Mi describes a "bended plane" through two of the three 
branches. There is an obvious action of S3 on I obtained by permuting the 
branches. 

PROPOSITION /Definition 3.2. 
(a) The normal sheaf Nj = Homj(I, E) of I is generated as an 

module by nl, n2.., n6 whose values on Al, A2, A3 are: 

n , n2 n3 n4 n5 n6 

A1 M3 M2 0 0 0 0 
A2 0 0 Ml M3 0 0 
A3 0 0 0 0 M2 Ml 

(b) A basis for TE is given by the classes of the normal vectors 

xqAi (q = O. ... In - 1; i=1, 2,3) and 

xqB (q = O. ... ., n -2). 

Here 

A1 = -n1 + n2, A2 = -n3 + n4, A3 = -n5 + n6; 

B =nl + * +n6. 

(c) Let ai Ej%=1a xj (i = 1, 2, 3) and let b j= 2o'bjx. 
Let S = C[al, a2, a3, b] be the polynomial ring in the coefficients aij and b. 

of the polynomials ai and b. Then a semi-universal deformation of 1B of I over 
B = Spec(S) is described by the ideal 

IB =(1'2, 3) e S[x, y, z] 

where, with Ni = Mi + b: 

1= N2N3 + al(N2 - N3) + ala2 + ala3 + a2a3. 

*2 = N1N3 + a2(N3 - N1) + ala2 + ala3 + a2a3. 

*3 = N1N2 + a3(N1 - N2) + ala2 + ala3 + a2a3. 
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(d) The normal sheaf NB := Hom(IB, &1B) of 1B is generated as an 
&,B-module by v1, V2, ..., V6 whose values on S1, S2, ,3 are: 

V1 V2 V3 V4 V5 V6 

1 N3-a2 N2 + a3 -a1-a3 0 0 al + a2 
0 a+a3 N1-a3 N3 +a, -a2-a1 0 

= -a3-a2 0 0 a3 +a1 N2-a1 N1+a2 

We leave the straightforward proof to the reader and note that the deforma- 
tion with ai = 0 for general values of b will create a curve having n triple 
points. The result (d) will be needed later on. 

Definition 3.3. Let f = A2j + A2 + A2 and let X be defined by the 
equation f = O. 

Now X is a weakly normal surface singularity in C3 having exactly the 
curve I of (3.1) as singular locus. (A different real form of) X looks something 
like Figure 5. 

FIGURE 5 

PROPOSITION 3.4. 
(a) The normalization X of X is an n-star singularity. 
(b) dim Tx = 6n - 2. The following elements of T1(Y, X) - T1(X X) 

project onto a basis of T': 

I xqM1M2 M3 q = O,...,n-1; 

II 2x qAi A, q = 0, .. ,n-1, - . (i = 1,2,3); 

III 2XqB Al q =O,.. n-2; 

IV X qA 2A31 q =O, . ,n - 2. 

(c) CIe(f) = dim fl/(f I nqJ(f)) = 9n - 5, dim T1(1, X) = 13n -6, 
j(f) = dim 1/J(f) = 16n - 6, VD.(ff) = 4n. 
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Proof. Statement (a) follows as in the proof of Proposition 2.2. For (b) one 
has to rely on [J-S3, Th. 3.1], but let us point out the geometrical significance of 
the indicated deformations. By Corollary 1.9, j1/12 is a cyclic module generated 
by (D. In this case (D = M1M2M3 and the first n infinitesimal admissible 
deformations of type I are obtained by adding e x q( to the defining function f 
of X. Furthermore, because f E 12 we get admissible deformations by replacing 
the Ai by l in f. In first order, this gives the deformations II and III, 
corresponding to the A and B deformations of X in Proposition 3.2. (Here we 
used the shorthand notation B * A = E3= B(Ai) * Ai, etc.) The deformations of 
type IV are deformations that do not deform X and keep f in 12. In this case, 
these correspond to the moduli of X, and it is hoped the reader will realize that 
these are unimportant for our purposes. Statement (c) lists the values of some 
important invariants of X that figure in [J-S2] and [J-S3]. These are included for 
completeness only and are not used in the sequel. 1 

Definition 3.5. Let e := E lej * xi and let R = S[e] = C[al, a2, a3, b, el 
be the polynomial over the ring S of Proposition 3.2(c) in the coefficients of the 
polynomial e. Now in the ring R[x] consider the algorithm of division by 
xn + b with remainder; i.e., we write 

e * ai = (xn + b)[eai] + Ei (i = 1,2,3). 

with the degree of Ei in x less than n. Hence [e * ai] and Ei are polynomials in 
x with certain universal elements of R as coefficients. Let J(n) be the ideal in R 
generated by the coefficients of the polynomials E1, E2, E3 and let 

B(n) Spec(R/J(n)). 

Furthermore, let m = (aI, a2, a3, b, e) be "the" maximal ideal of the ring R. 
In the course of proving the main result of this paragraph, Theorem 3.8, we 

will need the following lemma. 

LEMMA 3.6. The following relations hold: 

Ei * a Ej * ai modulo(xn + b)mJ(n) 

[eai] * [eaj] * ai modulo mJ(n). 

Proof We do division with remainder in R[x]: 

Ei a = (Xn + b)[E* a] + Rij, with degree of Rij in x less than n. 

Then 
(e * ai) * aj (Xn + b)[eai] + Ei}- aj 

= (xn + b){[eai] * ai + [Eiaj]} + Rij. 
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Changing the roles of i and j, we see that Rij = Rp, and hence 

Ei a-Ey ai = (xn + b){[Eiaj] - [Ejai]} E (xn + b)mJ(n). 

The second assertion is also easy. 

Notation/Convention 3.7. Let 
V1 = (0, 1,-i), W1 = (0, -N3,N2), 

V2 = (-1,0,1), W2 = (N3,0, -N1), 
V3 = (1, -1, 0), W3 = (-N2, N1, 0), 

and let the vector a' be defined by 

a' = e(N1, N2, N3) + Ee aiVi + E[eai]Wi + E [eaiaj] (1, 1,1). 
i j i<j 

Furthermore, we will adopt the "inproduct convention" by writing X Y 
EXi Yi for any two symbols X and Y indexed by the same index set. 

THEOREM 3.8. The base space of a semi-universal deformation of the n-star 
X is isomorphic to the space T = B(n) X Cn- 1. A projection of the total space XT 
of a semi-universal deformation of X is the hypersurface XT described by the 
equation: 

a x = 0. 
Here 

n-2 

aE = , a +c ,C Xi (0? 0v/-2), 
j=O 

Proof. Because the functor Def(X -> X) is naturally equivalent to the 
functor Def(l, X) of admissible deformations, and the natural forgetful functor 
Def(X -> X) -> Def(X) is smooth ([J-S3]), every admissible deformation of X 
induces a deformation of X and every deformation of X can be lifted to an 
admissible deformation of X. Hence, by Schlessinger's construction of a (formal) 
semi-universal deformation ([Sch, 2.11]), we have to find ideals 

Jk C U:= = C[[al, a2, a3, b, e, c]] and deformations 

e E Def(Y, X)(U/Jk) 
such that: 

* J2 = m2 and 62 induces a semi-universal deformation of X to first order. 
* * Jk+1 is an ideal such that Jk D Jk~l D m Jk and such that Jk+1 is 

minimal with respect to the property that Gk lifts to 6k+ 1 

Proposition 3.4 (b) means just that * holds. As for **, we are going to prove 
that the ideals Jk := J(n) + mk (with J(n) as in Definition 3.5) and Gk = 6 
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modulo Ik (with ( the family as in the statement of the theorem) will do the job. 
In general, a way to construct a minimal Jk+1 out of Ik and Gk is by obstruction 
theory. Let us recall how this works for the functor of admissible deformations. 
For details we refer to [J-S2]. Consider a small extension of the form 

0 ->J/mJ -> U/mJ -> U/J -> 0 

and let G E Def(1, X)(U/J). Suppose that f is described by 
=a Y-ai Hi 

where ff = 0 is an equation for X, and Ei generators of the ideal of h. By 
[J-S2], admissibility of the family means that one can find, for every normal 
vector v e Hom(,, A,), a y = y, such that the following relation holds: 

a v + y1 Y(a= ). a v(SH) + .yi Hi) = O mod J. 

The obstruction element is defined as follows. 

Ob(() = {n t-* a v + yP - a} E J/mJ a) N*/I. 

Here v is any lift of n E N = Homl(I, As) and N* = Homl(N, As). In 
particular, this applies to J = Ik and f = Gk, giving us an obstruction element 
Ob(Gk). Then a minimal ideal Jk+ 1 is constructed from Ik and Ok by Jk+ ? 

(V1, ... ., V) + mJk, where Vi = vi(Ob(Ak)), vi a dual basis of N*/I. 
So, in order to show that the system of ideals Ik = J(n) + mk satisfies 

condition * *, we must have: 
(1) ( is an admissible family; i.e., for every v of Proposition 3.2 (d) there 

exists a y, such that a v + yV = 0 mod J(n). 

(2) (v1(Ob(f)), .. ., vo(Ob(f))) = J(n)/mJ(n) 
because then, by induction, Ik = J(n) + mk. 

For a function a" l in (/)2 it is easy to find for each v a y, such that 
a" v + y, S = 0, not only modulo J(n). (This is the idea of 12-equivalence; 
see [J-S2].) So we may as well first replace a by the a' of (3.7) and then look for 
the appropriate y's. In Definition 3.9 we define certain y's and Lemma 3.10 
contains a proof that these yI's have the above properties. 

Definition 3.9. Six vectors, yi, i = 1, 2, ... , 6, are defined as follows: 

Y, = -(0,e,0) +([ea2] + [ea3], [ea2] , 0 ) 

Y2 = -(0,0, e) -([ea2] + [ea3], 0 , [ea3] ) 

y3 = -(0, 0, e) +( 0 , [ea] + [ea3], [ea3] ) 

Y4 = -(e,0,0) -( [ea] ,[eaJ] + [ea3], 0 ) 

Y5 = -(e,0,0) +( [eaJ , 0 ,[eaJ] + [ea2]) 

6= -(0, e, -( 0 , [ea2] , [ea] + [ea2]). 
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LEMMA 3.10. (a) The dual N* of the normal sheaf Nj is generated as an 
&,-module by the six elements n* (i = 1, 2, .. ., 6), of which the only non-zero 
values on the six normal vectors ni of 3.2 (a) are: 

n* (n3) n* (n6) = Ml) 

n* (n2) = n*(n5) = M2, 

n* (n) = n* (n4) = M3. 

(b) The dimension of the obstruction space N*/I is 3n, and a basis is given 
by xq(n* - n*), xq(n* - n*l), xq(n* - n*), q = O, 1, 2,..., n - 1. 

(c) With all the notation introduced above, the following six equations hold 
modulo mJ(n): 

CV1 + y1H = -3E2M3; a'v3 + y3H = -3E3M1; a'V5 + Y5# = -3E1M2, 
C V2+y2S= 3E3M2; aV4 + Y43 = 3E1M3; CYV6 + y6S- 3E2M1 

(d) The obstruction element of thefamily of Theorem 3.8 in J(n)/mr(n) 0 
N*/I is equal to Ei(n* - n*) + E2(n* -n*) + E3(n -nt). 

Proof. Statements (a) and (b) are proved by a straightforward calculation. 
The identities (c) really come to the heart of the matter. Because we can use 
symmetry, we have to check only the first identity. Writing out a' v1 + y1i we 
find: 

V1 + y1 = -3ea2N3 - 3ea2a3 + (N1 + N2 + N3)[ea2]N3 

?(E[eaiaj] - [ea2]al - [ea3]al) N3 

+ ea3] a2 + [ea2]al - [eal]a2 + [ea3]al - [eal] a3) N2 

+ [ea2]a3Nl 

?(Eajaj)(2[ea2] + [ea3]) - (E[eaiaj])(2a2 + a3) 

By Lemma 3.6 this reduces modulo mJ(n) to: 

a' P + Y1 = - 3ea2N3- 3ea2a3 + (N1 + N2 + N3)[ea2]N3 

+ [ea2a3] (N1 + N2 + N3). 

Now remember that 

N, = M, + b, 

N1 + N2 + N3 = 3(xn + b), 

(xn + b)[ea2] = ea2 - E2, 

(x + b)[ea2a3] = ea2a3 -E2a3 
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Thus we find: a' - v + y1 S = 
-3E2N3, 

-3E2M3 modulo mJ(n). State- 
ment (d) follows directly from (c). 

4. The structure of the base space 

The space B(n) of Definition 3.5 is defined by conditions that are conceptu- 
ally very simple: take four polynomials a,, a2, a3 and e of degree n - 1 with 
indeterminates as coefficients and a similar polynomial b of degree n - 2. Then 
B(n) is defined by the condition that eai be divisible by Xn + b for i = 1, 2, 3. 
To give the reader an idea about how these equations look, we write them out 
for n = 1 and n = 2. 

Example 4.1. 

n = 1: ea = ea2= ea3 = O. 

n = 2: e0a1o - belall = e0a20 - bela2l = e0a30 - bela3l = 0 and 

e0all + ela1o = e0a21 + ela20 = e0a31 + ela30 = 0. 

Of course, the case n = 1 is the base space of the Pinkham example [Pi]: a 
one-dimensional linear space transverse to a three-dimensional linear space. For 
n = 2, the equations are already a bit harder to analyse. The space has 
components of dimension 3, 5 and 7, the five-dimensional component being 
singular; it is not even Cohen-Macaulay. The primary decomposition of the ideal 
is: 

J(2) = (eo, el) 

((e2 - b e2, ajo ajo - b ail aj1, aj0 a - ail aj0 (i, = 1,2,3),1(2)) 

n (aio) ail (i = 1,2,3)). 

Using the interpretation of divisibility of polynomials, we find it easy to get 
information on the space B(n) as a set. 

THEOREM 4.2. The space B(n) has the following properties: 
(1) There are n + 1 irreducible components Yo, . . . , Yn and dim Yk = 2n - 

1 + 2k. 
(2) The normalization of Yk is smooth, k = O... ., n. 
(3) The multiplicity of Yk is (n) 

Proof: The C-valued points of B(n) correspond exactly to choices of 
ai , bk,el E C, such that the corresponding polynomials ai, e and b have the 
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property that the polynomial ai * e is divisible by the polynomial Xn + b. Now if 
e has a factor F of degree k with Xn + b in common, then each of the ai has to 
be divisible by G = (Xn + b)/F. Let Yk (k 0, . .. , n) be the subspace of 
B(n) such that the polynomial e has at least k roots in common with the 
polynomial Xn + b and the polynomials ai (i = 1, 2, 3) have at least n - k roots 
in common with the polynomial Xn + b, the Yk's are algebraic sets (which we 
give the reduced structure) and clearly B(n) = U Yk as sets. To describe the 
normalization of Yk we do the following: define generic polynomials F and G: 

k-i n-k-i 

F = xk + E fxi; G = xn-k + E gji, 
i=O i=O 

and consider the ring Sk := C[al, a2, a3, b, e, f, g]. Consider division with 
remainder in Sk[X] through F and G and write 

e = QF F + RF(e), deg(RF(e)) < k, and 

ai= QG(ai) G + RG(aj), deg(RG(a )) < n - k, i = 1, 2, 3. 

Let Lk be the ideal in Sk generated by the coefficients of the polynomials 
RF(e), RG(ai) and F G - (Xn + b). The following facts are easy to check: 

*There is a finite ring map 

C[a 1 a2, a3, bI e]/J(n) = R/J(n) -* Sk/Lk 

which sends each variable of R to the one in Sk with the same name. 
*Sk/Lk - Qek, . . . en-,, ain-k* ain-1, * k-21 g] 
*The map Yk = Spec(Sk/Lk) -> B(n) maps generically one-to-one onto 

the set Yk. 
The conclusion is that Yk is the normalization of Yk and this proves 

statements (1) and (2) of the theorem. Statement (3) follows from the fact that Yk 
is irreducible and that there are (n ways to choose k roots out of the n roots of 
xn + b. We leave the details to the reader. 

Remark 4.3. The equations of the space B(n) are linear in the coefficients 
of the polynomials e and ai, i = 1,2, 3; so there are matrices M and N such that 
the equations can be written in either of the following two ways: 

(a0,..., ain-1) M = 0, i = 1, 2, 3, or 
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Here M is the n X n matrix of "multiplication with e in the ring R[x]/ 
x + b" and depends only on the el and bk. Similarly, N is an n X (3n) matrix 
depending only on the aij and bk, composed of the multiplication matrices of 
a,, a2 and a3. 

We define the ideals Jk (k = O., n) as the ideals generated by the 
(k + 1) x (k + 1) minors of M, the (n + 1 - k) X (n + 1 - k) minors of N, 
together with the equations of the space B(n). 

We can prove the following: 
(1) The locus defined by Jk is Yk. 

(2) The ideals Jk are generically reduced. 
(3) J(n) = JO n n Jn- 

We have been unable to prove, however, that the Jk's are radical. When they 
are, (3) is the primary decomposition of J(n). 
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